Startec

Startec

This AI Paper Shows How Diffusion Models Memorize Individual Images From Their Training Data And Emit Them At Generation Time

Mai 23, às 07:07

·

4 min de leitura

·

2 leituras

In recent years, image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have gained considerable attention for their remarkable ability to generate highly realistic synthetic images. However,...
This AI Paper Shows How Diffusion Models Memorize Individual Images From Their Training Data And Emit Them At Generation Time

In recent years, image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have gained considerable attention for their remarkable ability to generate highly realistic synthetic images. However, alongside their growing popularity, concerns have arisen regarding the behavior of these models. One significant challenge is their tendency to memorize and reproduce specific images from the training data during generation. This characteristic raises important privacy implications that extend beyond individual instances, necessitating a comprehensive exploration of the potential consequences associated with the utilization of diffusion models for image generation.

Understanding diffusion models’ privacy risks and generalization capabilities is crucial for their responsible deployment, especially considering their potential use with sensitive and private data. In this context, a research team of researchers from Google and American universities proposed a recent article addressing these concerns.

Concretely, the article explores how diffusion models memorize and reproduce individual training examples during the generation process, raising privacy and copyright issues. The research also examines the risks associated with data extraction attacks, data reconstruction attacks, and membership inference attacks on diffusion models. In addition, it highlights the need for improved privacy-preserving techniques and broader definitions of overfitting in generative models.

The experiment conducted in this article involves comparing diffusion models to Generative Adversarial Networks (GANs) to assess their relative privacy levels. The authors investigate membership inference attacks and data extraction attacks to evaluate the vulnerability of both types of models.

The authors propose a privacy attack methodology for the membership inference attacks and perform the attacks on GANs. Utilizing the discriminator’s loss as the metric, they measure the leakage of membership inference. The results show that diffusion models exhibit higher membership inference leakage than GANs, suggesting that diffusion models are less private for membership inference attacks.

In the data extraction experiments, the authors generate images from different model architectures and identify near copies of the training data. They evaluate both self-trained models and off-the-shelf pre-trained models. The findings reveal that diffusion models memorize more data than GANs, even when the performance is similar. Additionally, they observe that as the quality of generative models improves, both GANs and diffusion models tend to memorize more data.

Surprisingly, the authors discover that diffusion models and GANs memorize many of the same images. They identify many common memorized images, indicating that certain images are inherently less private than others. Understanding the reasons behind this phenomenon becomes an area of interest for future research.

During this investigation, the research team also performed an experimental study to check the efficiency of various defenses and practical strategies that may help to reduce and audit model memorization, including deduplicating training datasets, assessing privacy risks through auditing techniques, adopting privacy-preserving strategies when available, and managing expectations regarding privacy in synthetic data. The work contributes to the ongoing discussion about the legal, ethical, and privacy issues related to training on publicly available data.

To conclude, This study demonstrates that state-of-the-art diffusion models can memorize and reproduce individual training images, making them susceptible to attacks to extract training data. Through their experimentation with model training, the authors discover that prioritizing utility can compromise privacy, and conventional defense mechanisms like deduplication are inadequate in fully mitigating the issue of memorization. Notably, the authors observe that state-of-the-art diffusion models exhibit twice the level of memorization compared to comparable Generative Adversarial Networks (GANs). Furthermore, they find that stronger diffusion models, designed for enhanced utility, tend to display greater levels of memorization than weaker models. These findings raise questions regarding the long-term vulnerability of generative image models. Consequently, this research underscores the need for further investigation into diffusion models’ memorization and generalization capabilities.


Check out the Paper. Don’t forget to join our 21k+ ML SubRedditDiscord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more. If you have any questions regarding the above article or if we missed anything, feel free to email us at [email protected]

🚀 Check Out 100’s AI Tools in AI Tools Club

Mahmoud Ghorbel

Mahmoud is a PhD researcher in machine learning. He also holds a
bachelor's degree in physical science and a master's degree in
telecommunications and networking systems. His current areas of
research concern computer vision, stock market prediction and deep
learning. He produced several scientific articles about person re-
identification and the study of the robustness and stability of deep
networks.


Continue lendo

DEV

Authentication system using Golang and Sveltekit - Dockerization and deployments
Introduction Having built out all the features of our application, preparing it for deployment is the next step so that everyone around the world will easily access it. We will deploy our apps (backend and...

Hoje, às 19:52

DEV

LEARN API AND ITS MOST POPULAR TYPE
An API (Application Programming Interface) is a set of rules and protocols that allows different software applications to communicate and interact with each other. It defines the methods, data structures, and...

Hoje, às 19:26

AI | Techcrunch

Investors take note: Wildfire smoke will spark a surge in East Coast climate tech startups
As smoke from Canadian wildfires has enveloped large swathes of the East Coast, millions of people have found themselves trapped inside, gazing out on orange skies and hazy cityscapes. The air quality index —...

Hoje, às 18:08

DEV

A Plain English Guide to Reverse-Engineering the Twitter Algorithm with LangChain, Activeloop, and DeepInfra
Imagine writing a piece of software that could understand, assist, and even generate code, similar to how a seasoned developer would. Well, that’s possible with LangChain. Leveraging advanced models such as...

Hoje, às 18:08

DEV

Finding Harmony in Marketing and UX
When we think of teamwork in the world of user experience (UX), we often imagine design and engineering working together. However, the idea of design and marketing working together is not as common. While...

Hoje, às 17:02

DEV

💡 Where to Find Inspiration for Building Your Next App
The first steps before turning your ideas into code. Whenever I’m trying to think of an idea to build a new application or website and I get stumped on what to do, there’s one phrase that always comes to...

Hoje, às 16:58

DEV

How to create 700+ SEO optimised pages for website in 1 h using Next.JS, OpenAI, Postgres
Small intro, I started learning coding couple of months before and since then experimenting with different small side projects. So this I show coding still looks for me:) What did I build this...

Hoje, às 16:37

DEV

Angular Project Mongodb database Connect | Angular Website Project | Angular App
Angular Project Mongodb database Connect | Angular Website Project | Angular App - YouTube ​ @softwaretechit Download Our App:- https://blog.softwaretechit.com/p/download.htmlWhat will we Learn In This...

Hoje, às 16:10

AI | Techcrunch

Meta warned it faces 'heavy sanctions' in EU if it fails to fix child protection issues on Instagram
The European Union has fired a blunt warning at Meta, saying it must quickly clean up its act on child protection or face the risk of “heavy sanctions”. The warning follows a report by the Wall Street...

Hoje, às 16:03

DEV

Taking Control with PostgreSQL Functions: Closing the Gap to ORM Functionality
Unveiling the Disparity: Understanding the Divide Between Direct Driver and ORM Functionality When it comes to choosing the technologies for developing a backend and manipulating data in a database like...

Hoje, às 16:02